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Abstract— Linear discriminant analysis has been incorporated
with various representations and measurements for dimension
reduction and feature extraction. In this paper, we propose two-
dimensional quaternion sparse discriminant analysis (2D-QSDA)
that meets the requirements of representing RGB and RGB-D
images. 2D-QSDA advances in three aspects: 1) including sparse
regularization, 2D-QSDA relies only on the important variables,
and thus shows good generalization ability to the out-of-sample
data which are unseen during the training phase; 2) benefited
from quaternion representation, 2D-QSDA well preserves the
high order correlation among different image channels and
provides a unified approach to extract features from RGB and
RGB-D images; 3) the spatial structure of the input images is
also retained via the matrix-based processing. We tackle the
constrained trace ratio problem of 2D-QSDA by solving a cor-
responding constrained trace difference problem, which is then
transformed into a quaternion sparse regression (QSR) model.
Afterward, we reformulate the QSR model to an equivalent
complex form to avoid the processing of the complicated structure
of quaternions. A nested iterative algorithm is designed to learn
the solution of 2D-QSDA in the complex space and then we
convert this solution back to the quaternion domain. To improve
the separability of 2D-QSDA, we further propose 2D-QSDAw
using the weighted pairwise between-class distances. Extensive
experiments on RGB and RGB-D databases demonstrate the
effectiveness of 2D-QSDA and 2D-QSDAw compared with peer
competitors.

Index Terms— Linear discriminant analysis, 2D-QSDA, dimen-
sion reduction, sparse feature extraction, RGB image, RGB-D
image.

I. INTRODUCTION

L INEAR discriminant analysis (LDA) [1] is a classical
supervised method for dimension reduction and feature

extraction. It essentially learns a discriminant subspace where
the separability of different projected classes is maximized.
Compared with principle component analysis (PCA) [2], LDA
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takes the class label of the data into consideration. It extracts
the discriminant information while ignoring the components
that are useless for class separability.

LDA assumes that the data samples are linearly separable.
However, this assumption would probably fail in practical
scenarios when the data are of high-dimensionality [3]. To
solve this problem, the works in [4], [5] exploited different
intra-class geometric measures while preserving the inter-class
discrimination. They can discover effective low-dimensional
subspace from the high-dimensional ambient space. Another
feasible approach is to adopt the kernel trick [6] such
that the linearly inseparable input can be cast into a high-
dimensional or infinite-dimensional feature space where the
input data are linearly separable. From this viewpoint, kernel
discriminant analysis (KDA) [3] and individualized KDA
(IKDA) [7] were proposed and have shown promising perfor-
mance due to the flexibility of kernels. When being applied
to image data, these methods necessitate the vectorization
of input samples and suffer from the high computation and
memory costs for constructing covariance matrices from long
vectors. Another intrinsic drawback is that they ignore the
spatial structure of the input images. Two-dimensional LDA
(2D-LDA) [8] solves these limitations by extracting features
from 2D image matrices and thus promotes the performance
in the subsequent processing.

Nowadays, color images have dominated practical applica-
tions [9], [10]. Moreover, with the advance of modern cameras,
RGB-D images also become popular [11] and the complemen-
tary nature of the depth and color information creates new
opportunities for the computer vision tasks [12]. However,
the above-mentioned methods were designed for gray-scale
images. When being applied to RGB and RGB-D images,
they simply treat different image channels independently,
failing to consider the cross-channel correlation. A practical
solution is to concatenate the multiple channels into larger
vectors or matrices. Nevertheless, the concatenation model
captures only the pairwise correlation between image channels,
and thus, still suffers performance degradation. Since a multi-
channel (e.g., RGB, RGB-D) image is not a simple combina-
tion of scalars but rather a vector-valued array, it is important
to encode the whole structure of the array to preserve the high
order cross-channel correlation. In this respect, the limitation
of the concatenation model is derived from the fact that it
contains only a fraction of the unfolding matrices which are
needed to completely represent a vector-sensor array [13]. To
address this issue, tensor representation (TR) [14] and quater-
nion representation (QR) [15], [16] were utilized to represent
RGB and RGB-D images. Tensor discriminant analysis (TDA)
[14] was proposed by representing color images as third-order
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tensors. The quaternion is a four-dimensional hyper-complex
number system for representing multi-channel signals which
exhibit complex coupling across channels. It can completely
encode the cross-channel relationship of color images, and
has been widely used in the literature [13], [15], [17]–[20].
Based on QR, quaternion discriminant analysis (QDA) [21]
was proposed. It converts color images into high-dimensional
quaternion vectors and endures a high computation cost and
loses the spatial structure of images.

Considering practical scenarios, the existence of
outliers [22] in the training set or the out-of-sample
data in the testing set which are unseen during the training
phase [23] always degrades the recognition performance.
To alleviate these effects, many algorithms were proposed
by exploiting the l1-norm measurement [24] either on
the objective functions (robust algorithms) or as penalty
terms (sparse algorithms). Representatives are 2D-LDA
based on l1-norm (2D-LDA-L1) [22] and sparse tensor
discriminant analysis (STDA) [25]. However, due to the
limited representation capacity of modeling the high order
cross-channel relationship, those methods are inadequate in
processing RGB and RGB-D images.

Mathematically, the discriminant-based dimension reduction
methods end with solving a Trace Ratio problem in which
two partially coupled objectives are simultaneously optimized.
Specifically, they take the form of maximizing the separability
of different projected classes while minimizing the distances
of within-class samples. Since the trace ratio problem does
not have a closed-form solution, it is commonly transformed
into a Ratio Trace problem [1], [8]. Though widely used in
practical scenarios, the solution of the ratio trace formula-
tion may deviate from the original objective, and thus, is
inexact [26], [27]. Pioneer works proved that an iterative Trace
Difference formulation can be exploited to solve the ratio
trace problem [26], [27]. Yet, how to efficiently solve it with
additional constraints is an ongoing work.

Based on these observations, this paper presents two-
dimensional quaternion sparse discriminant analysis
(2D-QSDA) to extract sparse discriminant features directly
from 2D image matrices and proposes an elegant procedure
to solve 2D-QSDA. 2D-QSDA naturally takes advantage
of QR and 2D-LDA such that it well preserves the high
order cross-channel correlation and the spatial structure of
images and is computationally efficient. The key ingredient
of 2D-QSDA is the sparsity constraints imposed on the
projection vectors, which is a trade-off between the original
trace ratio function and the sparsity level of project basis. As a
result, it improves the generalization ability of 2D-QSDA and
makes it robust to the unseen data. In contrast to QDA that
can be solved via quaternion eigen-decomposition (QED),
2D-QSDA is formulated as a constrained trace ratio problem
and no off-the-shelf tools can be directly applied to solve it.
In this work, we first rewrite 2D-QSDA to a constrained trace
difference problem, then convert it to a quaternion sparse
regression model, and design a nested iterative scheme to
find the solution.

Besides, classical discriminant analysis methods find a
subspace where the between-class distance of projected

classes is maximized while the within-class distance is min-
imized. Essentially, they impose equal weights to all class
pairs [28]–[30]. However, this brings problems since the final
between-class separability is dominated by the class pairs
with large between-class distances, whereas those class pairs
with small between-class distances are more difficult to be
correctly classified and should be properly treated. On the
other hand, existing discriminant analysis methods separate
each class center from the total mean. This way, they cannot
guarantee that each class pair is well separated. Considering
the aforementioned problems, we propose 2D-QSDAw using
the weighted pairwise between-class distances, such that the
class pairs with small between-class distances are assigned
with relatively large weights to well separate these challenging
class pairs. Our contributions are listed as follows.

• We propose a novel quaternion sparse regression (QSR)
model to solve the constrained trace difference problem
of 2D-QSDA. Including sparse regularization, 2D-QSDA
can correctly identify the important variables and ignore
the less important ones. Therefore, it is generalizable to
classify the data that are unseen during the training phase.

• Without sparsity constraints, the QSR model reverts to
a quaternion ridge regression (QRR) model. We mathe-
matically prove that the solution of this QRR model is
equivalent to that of two-dimensional QDA. This verifies
the validity of integrating sparse regularization into the
QRR model to construct the QSR model of 2D-QSDA.

• To solve 2D-QSDA, we reformulate the QSR model to
an equivalent complex form to avoid the complicated
operations of quaternion derivations. We then design a
nested iterative algorithm for optimization, in which a
novel sub-algorithm is devised for sparse regularization
via the complex-valued alternating direction method of
multipliers (complex ADMM). Moreover, a fast complex
ADMM algorithm is presented by incorporating a con-
tinuation scheme, which is crucial to convergence.

• To improve the separability of 2D-QSDA, we introduce
2D-QSDAw using a weighting scheme so that the class
pairs with small between-class distances can be well
separated.

• Taking advantage of the four-dimensional structure of the
quaternions, 2D-QSDA and 2D-QSDAw can efficiently
extract features from RGB and RGB-D images. The
effectiveness and the generalization ability of 2D-QSDA
and 2D-QSDAw are verified by the applications of color
and 3D face recognition.

Please note that the proposed 2D-QSDA has a preliminary
conference version [31]. In this fully developed journal paper,
we have made significant improvements in algorithm design,
theoretical analysis, and experimental verification. These will
be elaborated in the main body of this paper. To improve
the separability of 2D-QSDA, we further propose 2D-QSDAw

using the weighted pairwise between-class distances. Although
2D-QSDA and 2D-QSDAw follow the same basic optimiza-
tion strategy with our previous work [18], they have com-
pletely different objective functions. Thus, different methods
should be developed to formulate their objective functions
into regression models. Accordingly, the equivalence between
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TABLE I

SUMMARY OF NOTATIONS

the optimization models and the corresponding regression
models should be carefully established. Detailed comparisons
with [18] will be provided in Sections III-A and VI-A.

In the rest of this paper, Section II presents the background
knowledge. Section III proposes 2D-QSDA and its solution.
The model of 2D-QSDAw is introduced in Section IV. The
effectiveness of 2D-QSDA and 2D-QSDAw is examined in
Section V. Then we compare 2D-QSDA with the state-
of-the-art quaternion-based models in Section VI. Finally,
conclusions are drawn in Section VII.

II. PRELIMINARIES

In this section, we briefly review the quaternion background
and several discriminant analysis methods. To clarify the state-
ments, some frequently-used notations are listed in TABLE I.

A. Quaternion Fundamental

The quaternions are a hyper-complex number system that
extends the complex number system [32]. A quaternion num-
ber (q̇ ∈ H) is composed of one real part and three imaginary
parts, and is generally represented as

q̇ = q0 + q1i + q2 j + q3k, (1)

with real coefficients q0, q1, q2, q3 and an ordered basis
{1, i, j, k}. The addition of quaternions follows that in real
space, and the multiplication of quaternions is defined by

i2 = j2 = k2 = i jk = −1. (2)

i j = − j i = k, jk = −k j = i, ki = −ik = j. (3)

The above rules make the multiplication of two quaternion
numbers non-commutative and this complicates the processing
of quaternions. Besides, the conjugate and norm of a quater-
nion number are defined as q̇ = q0 − q1i − q2 j − q3k and

|q̇| =
√

q̇q̇ =
√

q̇q̇ =
√

q2
0 + q2

1 + q2
2 + q2

3 , respectively.
Note that the basis operators for complex vectors and matri-

ces hold for quaternion vectors and matrices, e.g., the conju-
gate, transpose, and conjugate transpose. To formulate objec-
tive functions in quaternion domain, the norms of quaternion
vectors and matrices are used as measurements. The l1-norm

of q̇ = (q̇s) ∈ Hm is defined as ‖q̇‖1 =
m∑

s=1
|q̇s |, where

s = 1, · · · , m is a position index, and the F-norm of Q̇ =
(q̇s,t) ∈ Hm×n is defined by ‖Q̇‖F = (

m∑
s=1

n∑
t=1

|q̇s,t |2) 1
2 =

[Tr(Q̇∗Q̇)] 1
2 , where s = 1, · · · , m and t = 1, · · · , n are the

row and column indices respectively.
One of the effective approaches to process quaternion matri-

ces is to convert them into pairs of complex matrices [33]. Let
Q̇ = Qa + Qb j ∈ Hm×n be the Cayley-Dickson construction
[34] of Q̇, where Q̇ = Q0+Q1i +Q2 j +Q3k, Qa = Q0+Q1i ,
and Qb = Q2+Q3i . The complex adjoint form [33] uniquely
determines Q̇ using (Qa , Qb) as

χQ̇ =
[

Qa Qb

−Qb Qa

]
, (4)

where χQ̇ ∈ C2m×2n , and Q̇ and χQ̇ are isomorphic [33]. This
transformation has been widely used for quaternion matrix
analysis, e.g., QED [33].

B. LDA and Its Variants

1) LDA and 2D-LDA: LDA [1] and 2D-LDA [8] seek opti-
mal projection bases, denoted by the columns of V, to project
input samples into low-dimensional subspace. In this subspace,
the ratio of between-class scatter and within-class scatter is
maximized. Let Pb and Pw represent the between-class and
within-class scatters, and Sb and Sw denote the between-
class and within-class covariance matrices of the input sam-
ples. Projecting samples into the low-dimensional subspace,
the scatters of the projected samples can be evaluated by the
traces of the corresponding matrices, i.e., Pb = Tr(VT SbV)
and Pw = T r(VT SwV). The goals of LDA and 2D-LDA are to
maximize the ratio Pb

Pw
. The key difference between LDA and

2D-LDA lies in the representation of data, i.e., LDA copes with
vectorized samples while 2D-LDA uses 2D image matrices to
construct Sb and Sw . There is no closed-form solution of the
optimal V. Instead, the trace ratio problem is simplified to a
more tractable ratio trace problem [26], [27], which can be
efficiently solved via generalized eigen-decomposition.

2) QDA: QDA [21] incorporates the quaternion represen-
tation into discriminant analysis to well preserve the high
order cross-channel correlation of color images. Suppose there
are images from c classes and the i th class has hi samples,
ẋi

j represents the j th vectorized quaternion sample from the
i th class, and the mean quaternion sample of the i th class
is denoted by ¯̇xi = 1

hi

∑hi
j=1 ẋi

j , then Ṡb = ∑c
i=1 hi ( ¯̇xi −

¯̇x)( ¯̇xi − ¯̇x)∗ represents the between-class variance of the input
samples. Let the columns of V̇ be the quaternion projection
basis of QDA. QDA seeks an optimal basis that maximizes
the between-class scatter (Pb) in the projected subspace

max
V̇

Pb = max
V̇

(T r(V̇∗ṠbV̇)). (5)

The solution of Eq. (5) equals to the leading eigenvectors
of Ṡb. Please note that QDA optimizes only the trace function
instead of the trace ratio function. Besides, according to
the properties of the quaternion functions ( [35], TABLE 1),
QDA holds either left or right linearity. Technically, it should
be named quaternion left/right linear discriminant analysis.
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In both [21] and our work, we bypass the “left/right linear”
for simplicity.

III. 2D-QSDA

QDA uses quaternion vectors to represent color images and
shows performance enhancement over the configurations of
independently processing different image channels or concate-
nating these image channels [21]. However, it fails to preserve
the spatial structure of color images, endures high computation
cost of processing high-dimensional vectors, and ignores the
within-class scatter of the projected samples. Besides, QDA
is easily influenced by noise and are not robust to classify
the out-of-sample data which are unseen during the training
phase (e.g., occluded testing images). We propose 2D-QSDA
to solve the above problems.

A. Model of 2D-QSDA

To preserve the spatial structure of images, we directly
cope with 2D quaternion matrices. Specifically, let Ẋi

j (i =
1, · · · , c) be the j th quaternion image matrix with class label
i and hi represent the number of samples in the i th class.
We use ¯̇Xi = 1

hi

∑hi
j=1 Ẋi

j and ¯̇X = 1
c

∑c
i=1

¯̇Xi to represent
the mean sample of the i th class and that of all images
respectively. Let Ṡb = ∑c

i=1 hi (
¯̇Xi − ¯̇X)( ¯̇Xi − ¯̇X)∗ and Ṡw =∑c

i=1
∑hi

j=1(Ẋ
i
j − ¯̇Xi )(Ẋi

j − ¯̇Xi )∗ represent the between-class
and within-class covariance matrices, and V̇s = [v̇s1, · · · , v̇sk]
be the basis of 2D-QSDA. The projection scatters are calcu-
lated as Pb = T r(V̇∗

s ṠbV̇s) and Pw = T r(V̇∗
s ṠwV̇s). Incorpo-

rating the within-class scatter and the sparsity constraints into
the objective of 2D-QSDA, we formulate it as a constrained
trace ratio problem

max
V̇s

T r(V̇∗
s ṠbV̇s)

T r(V̇∗
s ṠwV̇s)

(6)

subject to card(v̇s j) ≤ ω, for j = 1, · · · , k,

where card(·) denotes the cardinality (i.e., the number of non-
zero elements) of the basis, which can be measured via the
l0-norm. For different values of the tuning parameter ω, Eq. (6)
yields adjustable levels of sparsity on the basis of 2D-QSDA.

There is no closed-form solution for the constrained trace
ratio problem in Eq. (6). We therefore transform it into a
constrained ratio difference problem. Considering the fact
that the sparsity constraints are used to control the cardi-
nality of the basis and not to alter the objective function,
we propose a novel quaternion sparse regression (QSR) model
that is equivalent to the constrained ratio difference form
to find a numerical solution of 2D-QSDA. The QSR model
of 2D-QSDA is presented as follows.

Theorem 1: Let �̇ = Ṡb − μṠw and its quaternion eigen-
decomposition be �̇ = Ṙ�Ṙ∗, and V̇s = [v̇s1, · · · , v̇sk] be
the solution of Eq. (6). Let �̇ = Ṙ

√| � |Ṙ∗. For any λ2 ≥ 0
and λ1, j ≥ 0, j = 1, · · · , k, if Ȧ = [ȧ1, · · · , ȧk] ∈ Hm×k and
Ḃ = [ḃ1, · · · , ḃk] ∈ Hm×k satisfy

min
Ȧ,Ḃ

(‖Ṙ−∗�̇−ȦḂ∗�̇‖2
F + λ2‖Ḃ‖2

F +
k∑

j=1

λ1, j‖ḃ j ‖1) (7)

subject to Ȧ∗Ȧ = Ik,

where Ṙ−∗ = (Ṙ−1)∗, then v̇s j = ḃ j

‖ḃ j ‖2
for appropriate λ1, j ,

j = 1, · · · , k.
By constructing �̇ = Ṡb −μṠw, we transform the trace ratio

problem into a trace difference form. The sparsity constraints
in Eq. (6) and the sparse regularization terms in Eq. (7) are
used to control the cardinality of v̇s j and ḃ j respectively at
the expense of slightly decreasing the objective functions. We
prove that ḃ j is proportional to v̇s j without sparse regular-
ization (see APPENDIX). Essentially, Theorem 1 makes a
compromise between the class separability and the sparsity
of the projection basis.

It is noteworthy that: 1) without sparsity constraints,
the trace ratio problem can be solved by iteratively updating
the value of μ since it is monotonously increasing [26], [27].
However, due to regularization, the monotonicity is destroyed.
Instead, we tune the value of μ to approximate the optimal
value; 2) in Eq. (7), the sparsity of the basis of 2D-QSDA is
controlled via the values of parameter λ1, j and the l1-norm
measurement since it is the tightest convex relaxation of the
l0-norm [36], [37]. The detailed settings of model parameters
will be introduced in Section V-B.

Remark: It is infeasible to optimize Eq. (6) using existing
methods, and the strategy in our previous work [18] is not
applicable as it is designed for a single objective and is based
on the fact that maximizing the scatter of all projected samples
equals to minimizing the sum of reconstruction errors [38]. To
this end, we propose Theorem 1 to optimize Eq. (6) that takes
the form of maximizing a constrained trace ratio problem,
in which two partially coupled objectives (i.e., between-class
and within-class scatters) are simultaneously optimized. In this
respect, our QSR model Eq. (7) is completely different from
that in [18] as the former is formulated by implicitly encoding
two partially coupled measures, while the latter directly copes
with image samples.

B. Solution of 2D-QSDA

Due to the complicated structure of quaternions, it is
difficult to directly solve the problem in Eq. (7). Existing
works convert the quaternion-valued problems to either the
real space [17] or the complex space [18], [33] for efficient
optimization. In this work, the complex space is adopted since
the quaternion matrices and their complex adjoint forms are
isomorphic [33]. In the following, we convert Eq. (7) into
a complex form, extract the complex-valued solution, and
then recover the quaternion-valued solution from the complex-
valued one.

The two F-norm terms in Eq. (7) can be transformed into
the complex space by adopting the complex adjoint forms of
the quaternion matrices as (see APPENDIX)

2(‖Ṙ−∗�̇ − ȦḂ∗�̇‖2
F + λ2‖Ḃ‖2

F )

= ‖χṘ−∗χ�̇ − χȦχḂ∗χ�̇‖2
F + λ2‖χḂ‖2

F . (8)

Let R = χṘ, � = χ�̇, A = χȦ, B = χḂ, and � =
��∗, where the columns of A and B are [a1, · · · , a2k] and
[b1, · · · , b2k]. Eq. (8) can be rewritten as

T r(R−∗�R−1)−2Re[Tr(A∗R−∗�B)]+Tr [B∗(�+λ2I)B].
(9)
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The k l1-norm terms in Eq. (7) can be reformulated using
the operator ξ(·) given in Definition 1.

Definition 1: Let q̇ = qa + qb j ∈ Hm and q be the first
column of χq̇, i.e., q = χq̇(:, 1) = [qa; −qb] ∈ C2m . ξ(q) is
defined as

ξ(q) = [qT
a ; qT

b ] ∈ C
2×m .

The l1-norm of q̇ equals to the l2,1-norm of the matrix ξ(q),
i.e.,

‖q̇‖1 = ‖ξ(q)‖2,1,

where ‖M‖2,1 =
m∑

j=1
‖M(:, j)‖2.

According to Eq. (4), the complex adjoint form has a
redundant structure. Hence, to recover a matrix in the complex
adjoint form, we need to calculate only the first half columns
and then infer the other half columns from the previous ones.
Then 2D-QSDA can be reformulated into a complex form

min
A,B

{Tr(R−∗�R−1) − 2Re[Tr(A∗R−∗�B)]

+ T r [B∗(� + λ2I)B] + 2
k∑

j=1

λ1, j‖ξ(b j )‖2,1}

subject to A∗A = I2k . (10)

There is no closed-form solution for Eq. (10) since variables
A and B are coupled and it is intractable to simultaneously
update A and B. We develop an alternating minimization
algorithm to iteratively learn their optimums. The iterative
scheme is described as follows.

1) Update A for Fixed B: Given B, the minimization of
Eq. (10) is equivalent to

max
A

Re[Tr(A∗R−∗�B)]
subject to A∗A = I2k, (11)

which reduces to the orthogonal Procrustes problem in the
complex domain [39]. Let C = R−∗�B and its singular value
decomposition be UcDcVc. Then Â = UcVc.

2) Update B for Fixed A: Given A, Eq. (10) equals to

min
B

{
k∑

j=1

[b∗
j (�+λ2I)b j − 2Re(a∗

j R
−∗�b j )

+ λ1, j‖ξ(b j )‖2,1]}. (12)

Thus, B can be optimized via k independent group Lasso
problems. Specifically, b j is solved by optimizing

min
b j

[b∗
j (� + λ2I)b j − 2Re(a∗

j R
−∗�b j ) + λ1, j‖ξ(b j )‖2,1].

(13)

Since Eq. (13) does not have a closed-form solution,
we rewrite it into the following constrained optimization prob-
lem by applying variable-splitting [40] to b j and introducing
an auxiliary variable Z

min
b j

[b∗
j (� + λ2I)b j − 2Re(a∗

j R
−∗�b j ) + λ1, j‖Z‖2,1]

subject to Z = ξ(b j ). (14)

We devise a novel algorithm under the framework of com-
plex ADMM [41] to solve Eq. (14). Let ξ−1(·) be the inverse
operator of ξ(·). According to Definition 1, ξ−1(·) converts
a matrix of size 2 × m into a vector of size 2m × 1. The
augmented Lagrangian function of Eq. (14) is

L(b j , Z, y)

= b∗
j (� + λ2I)b j − 2Re(a∗

j R
−∗�b j ) + λ1, j‖Z‖2,1

+ Re(y∗[b j − ξ−1(Z)]) + ρ

2
‖b j − ξ−1(Z)‖2

2, (15)

where y is the Lagrangian multiplier and ρ > 0 is the penalty
parameter. To solve L(b j , Z, y), we iteratively update b j , Z,
and y while the other two variables are fixed. More specifically,
given the τ th update, the (τ + 1)th iteration to optimize
L(b j , Z, y) is presented as follows.

• Update bτ+1
j by minimizing L w.r.t b j , which reduces to

min
b j

{b∗
j (� + λ2I)b j − 2Re(a∗

j R
−∗�b j )

+ Re(y∗[b j −ξ−1(Z)])+ρ

2
‖b j −ξ−1(Z)‖2

2}. (16)

The solution of Eq. (16) is determined by setting the
derivation of L w.r.t b j to zero. Thus, b j can be written
explicitly as

bτ+1
j =[�+(λ2 + ρ)I]−1[�R−1a j + ρξ−1(Zτ )−yτ ].

(17)

• Update Zτ+1 by minimizing L w.r.t Z. The optimization
of L equals to

min
Z

{ρ
2
‖bτ+1

j − ξ−1(Z)‖2
2

+ Re(y∗[bτ+1
j − ξ−1(Z)]) + λ1, j‖Z‖2,1}

= min
Z

{1

2
‖ξ−1(Z) − (bτ+1

j + yτ

ρ
)‖2

2 + λ1, j

ρ
‖Z‖2,1}

= min
Z

{1

2
‖Z − ξ(bτ+1

j + yτ

ρ
)‖2

F + λ1, j

ρ
‖Z‖2,1}.

(18)

Eq. (18) can be solved using Lemma 1, which is
derived according to the optimization of the group Lasso
problem [40], [41].
Lemma 1: If a problem considering Z ∈ C is to find

min
Z

{1

2
‖Z − T‖2

F + σ‖Z‖2,1}.
The optimal Z satifies

Ẑ(:, i) =
⎧⎨
⎩

‖T(:, i)‖2 − σ

‖T(:, i)‖2
T(:, i), ‖T(:, i)‖2 > σ

0, otherwise.

• Update yτ+1 as

yτ+1 = yτ + ρ[bτ+1
j − ξ−1(Zτ+1)]. (19)

The above procedures to optimize b j are summarized in
Algorithm 1.

Once b j ( j = 1, · · · , k) is optimized, we can obtain
the optimal bk+ j from b j according to the structure of the
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Algorithm 1 Complex ADMM for Computing b j

Algorithm 2 2D-QSDA

complex adjoint form. This way, the current optimal B is
obtained. The alternating minimization algorithm for Eq. (10)
continues until the stopping criteria is satisfied. Afterward,
we convert this complex-valued solution into a quaternion-
valued one using γ (·) in Definition 2. Note that this operator
is also the one that is used to recover the eigen/singular vectors
of a quaternion matrix from those of its complex adjoint
matrix [42].

Definition 2: Let c = [c1, · · · , cm, cm+1, · · · , c2m]T , c ∈
C2m . Define an operator γ (·) as

γ (c) = [c1, c2, · · · , cm ]T + [cm+1, cm+2, · · · , c2m]T j,

where γ (c) ∈ Hm is in the Cayley-Dickson form.
Subsequently, the solution of Eq. (7), V̇s = [v̇s1, · · · , v̇sk],

can be recovered from the optimal columns of B as v̇s j =
γ (

b j
‖b j ‖2

), j = 1, · · · , k. Finally, Algorithm 2 summarizes the
detail procedures of 2D-QSDA.

C. Discussion

In this section, we examine the following issues to provide
a comprehensive understanding of 2D-QSDA.

1) Optimal Conditions and Stopping Criterion: Essentially,
2D-QSDA involves a nested iterative scheme. The outer itera-
tion can start with any B∗B = I2k . To improve the convergence
speed, we set B to the complex adjoint form of the leading
eigenvectors of �̇. Let ‖b j ‖2 be the residual of the j th column
of B. The stopping criterion of the outer iteration is that all
column residuals are small enough, i.e., ‖b j‖2 < εouter , where
εouter is the tolerance and is fixed to 10−3 in our experiments.

As to the inner iteration, it is designed under the complex
ADMM framework to compute b j with the group Lasso
penalty. Let the primal residual r τ+1

pri = bτ+1
j − ξ−1(Zτ+1)

and the dual variable residual r τ+1
dual = ρ(Zτ+1 − Zτ ). The

optimal condition for the ADMM problem is that the residuals
approach zero as the iteration proceeds [41]. In practice,
this is achieved by setting the tolerances of the residuals
to be small numbers. We empirically set the stopping cri-
terion to ‖r τ+1

pri ‖2 < ε pri and ‖r τ+1
dual‖F < εdual , where

ε pri = εdual = 10−3.
2) Fast Complex ADMM With A Continuation Scheme: In

ADMM, the choice of the penalty parameter ρ requires some
precise tuning since it is crucial to the convergence behavior of
the algorithm and also has a significant impact on the stability
of the performance [43].

In this work, we modify the original complex ADMM algo-
rithm by employing a continuation scheme [43], in which ρ
is adapted according to the primal and dual variable residuals.
The continuation scheme is defined as

ρτ+1 =

⎧⎪⎨
⎪⎩

νincr ρτ , if ‖r τ
pri ‖2 > μ‖r τ

dual‖F

ρτ /νdecr , if ‖r τ
dual‖2 > μ‖r τ

pri‖F

ρτ , otherwise

(20)

where μ, νincr , νdecr > 1 are pre-defined parameters. The
idea behind this continuation scheme is to keep the relative
magnitudes of the primal and dual residuals within a factor μ
such that the residuals converge to zero simultaneously. We
set μ = 10 and νincr = νdecr = 2 as recommended in the
literature.

The strengths of this continuation scheme lie in two folds:
1) the convergence behavior of the complex ADMM algorithm
is more robust compared with a precise tuned ρ, and 2) the
computation cost of the complex ADMM algorithm is greatly
reduced since less iterations are needed [43]. These two advan-
tages will be experimentally demonstrated in the following
Section III-C.3. With the continuation scheme, Algorithm 1 is
now extended to Algorithm 3.

3) Convergence Analysis: According to Eq. (10), 2D-QSDA
converges to an optimum as long as the k independent group
Lasso problems Eq. (12) converge. As shown in Fig. 1 (a),
the outer iteration converges within 10 iterations.

For the inner iteration, the theoretical convergence of the
complex ADMM algorithm for separable convex optimization
was established in [41]. However, Eq. (12) is non-convex and
the theoretical proof on its convergence is still an ongoing
work. Following [41], we give the empirical convergence
analysis. In this example, two color images (32*32 pixels)
are chosen as the representations of two classes. Only one dis-
criminant projection vector (denote its corresponding complex
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Algorithm 3 Fast Complex ADMM With a Continuation
Scheme

Fig. 1. Empirical convergence of 2D-QSDA: (a) outer iteration; (b) inner
iteration with fixed ρ = 0.001; (c) inner iteration with fixed ρ = 0.1; (d) inner
iteration with adaptive ρ and ρ0 = 0.001; (e) inner iteration with adaptive ρ
and ρ0 = 0.1.

form as b1) can be learned from the training images, and
we set the non-zero elements in this basis vector to four.
As shown in Figs. 1 (b) and (c), if ρ is set to 0.001, the primal
residual decreases slowly and Algorithm 1 cannot converge;
meanwhile, Algorithm 1 achieves acceptable residuals within
hundreds of iterations when ρ = 0.1. This verifies the
importance of choosing an appropriate ρ.

Adopting Algorithm 3, we plot the residuals of the
primal and dual variables with different initial values of
ρ in Figs. 1 (d) and (e). Compared to the results from
Algorithm 1, two observations can be made: 1) the conver-
gence behavior of Algorithm 3 is relatively independent from
the initial value of ρ; 2) Algorithm 3 converges within dozens
of iterations, and thus markedly improves the computation
efficiency.

4) Computation Complexity: We examine the computation
cost of 2D-QSDA as: 1) the construction of Ṡb, Ṡw, and �̇
costs operations of order O(hnm2), and to obtain Ṙ and �̇,
the decomposition needs O(m3) operations; 2) reformulating
the optimization problem into a complex form is in linear
order; 3) in each iteration of Algorithm 3:

• for A-update, the orthogonal Procrustes problem needs to
be solved with O(m3) operations.

• for B-update, k basis vectors (b j , j = 1, · · · , k) are
optimized individually under the complex ADMM frame-
work, which is composed of four iterative steps as

i) updating b j . The most expensive cost is the matrix
inverse operation with order O(m3).

ii) updating Z. The Z-update is composed of calcu-
lating the column-wise l2-norm and applying soft-
thresholding at the cost of O(m).

iii) updating y. The computation cost is O(m).
iv) adjusting ρ. The complexity is O(m).

Suppose the number of iterations of Algorithm 3 is T1,
it can be carried out at the cost of O(T1m3). Then, the cost for
B-update will be O(kT1m3). The cost of A-update is negligible
compared to that of B-update. Let the number of iterations in
Algorithm 2 be T2. The total computation cost of 2D-QSDA
is O(hnm2 + kT1T2m3).

IV. 2D-QSDAw USING WEIGHTED PAIRWISE

BETWEEN-CLASS DISTANCES

The proposed 2D-QSDA is designed to maximize the
between-class scatter while minimizing the within-class scatter
with sparse constraints. Following the strategies in [28]–[30],
we rewrite the final between-class scatter of 2D-QSDA
as the mean scatter of all class pairs, i.e., Ṡb =∑c−1

i=1
∑c

j=i+1 hi h j (
¯̇Xi − ¯̇X j )( ¯̇Xi − ¯̇X j )∗. That is, the between-

class scatters of all class pairs are equally weighted, the final
between-class scatter is thus dominated by large between-class
scatters. However, the underlying goal of discriminant analysis
is to maximize the between-class scatter of each class pair
rather than separating each class center from the total mean.
From this respect, maximizing small between-class scatters of
class pairs is more challenging since the class pairs with large
between-class scatters have already been well-separated.

We adopt a real-world dataset to illustrate this problem.
Specifically, the first five classes from the PIE database [44]
are selected with seven samples per class. We reshape the
samples into quaternion vectors and project them into a two-
dimensional subspace. As shown in Fig. 2 (a), Classes 1, 2,
and 5 are well-separated, and the distance between Classes
3 and 4 is small. This is because the final between-class scatter

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on September 12,2020 at 09:29:17 UTC from IEEE Xplore.  Restrictions apply. 



2278 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Fig. 2. Comparison of the separability of (a) 2D-QSDA and (b) 2D-QSDAw .
(Stars represent the class centers.)

is dominated by the large distances of class pairs, and hence,
the pairwise between-class distance of Classes 3 and 4 is
not maximized. Nevertheless, it is rather difficult to correctly
separate Classes 3 and 4.

To solve this limitation, we propose 2D-QSDAw to improve
the separability of 2D-QSDA using the weighted pairwise
between-class distances. The core idea of 2D-QSDAw is to
set large weights to the small between-class distances and vice
verse. We define the weighting scheme of 2D-QSDAw as

Ṡb =
c−1∑
i=1

c∑
j=i+1

wi, j hi h j (
¯̇Xi − ¯̇X j )( ¯̇Xi − ¯̇X j )∗ (21)

where wi, j = adi, j is the weight of the (i, j) class pair,
0 < a < 1 is a constant, and di, j measures the between-class
distance of the (i, j) class pair. In the experiments, we empir-
ically set a = 0.5 and adopt the squared Euclidean distance
to calculate di, j . As can be seen from Fig. 2 (b), adopting the
weighting scheme, 2D-QSDAw finds a better subspace than
2D-QSDA since it is much easier to separate Classes 3 and
4 in this subspace. After formulating the final between-class
scatter of 2D-QSDAw using Eq. (21), 2D-QSDAw is optimized
following the same strategy in 2D-QSDA.

V. EXPERIMENTS

2D-QSDA and 2D-QSDAw are designed to extract sparse
discriminant features from the RGB and RGB-D images
while reducing the feature dimension. More importantly, they
exhibit good generalization ability to the unseen data due
to sparse constraints. Benefited from the intrinsic structure
of quaternion, 2D-QSDA and 2D-QSDAw provide a unified
approach to process RGB and RGB-D images and the exten-
sion from RGB images to RGB-D ones will not bring extra
computation burden. In addition, since the depth channel con-
tains complementary information to the color channels [12],
2D-QSDA and 2D-QSDAw can well extract the discriminant
features by feeding the complementary data for performance
enhancement. In this section, we validate the effectiveness of
2D-QSDA and 2D-QSDAw with applications of color and
3D face recognition. We introduce the databases and the
experiment settings in Sections V-A and V-B, respectively. The
performance of 2D-QSDA and 2D-QSDAw is compared with
that of the state-of-the-arts in Sections V-C and V-D.

A. Databases

1) Color Face Databases: AR database [45] contains
3276 color face images of 126 individuals with different

Fig. 3. Examples of color face images from: (a) AR, (b) Color FERET, and
(c) CMU PIE.

Fig. 4. Examples of 3D face images from: (a) EURECOM, (b) LFFD, and
(c) UMB.

expressions, illumination conditions, and occlusions. We
employ a popular subset of AR [46] in which color face images
from 100 individuals are cropped.

Color FERET database [47] contains 14,126 color face
images of 1199 individuals. We collect a subset of FERET
that contains 265 subjects with expression variations (images
marked by “fa” and “fb”).

CMU PIE database [44] is composed of color face images
from 68 individuals. For each subject, face images with differ-
ent poses, illumination, expressions, and frames from a talking
sequence are recorded. We collect a subset (images captured
by “C27”) of CMU PIE. For each person, one neutral face
image, two face images with blinking and smiling expressions,
and four images from the talking sequence (frames labeled by
00, 19, 39, and 59) are selected.

2) 3D Face Databases: EURECOM Kinect database [48]
provides 3D face images of 52 subjects. The face images
are captured with different expressions, lighting conditions,
and occlusions. In our experiments, 728 3D face images with
frontal position are used.

IST-EURECOM light field face database (LFFD) [49] con-
tains 3D face images of 100 individuals taken in two sessions
with a temporal separation. Variations including emotions,
actions, poses, illuminations, and occlusions are captured in
each session for each subject. The face images are captured
by a light field camera and then rendered into RGB and depth
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images. All frontal images are involved for our experiments,
namely, 2800 3D face images are used in total.

UMB database [50] is a set of 3D face images of 126 per-
sons with a particular focus on real-world occlusions, e.g.,
scarves, hats, hands. In our experiments, all persons that
associated with occlusion images of scarfs, hands, and hats
are selected, composing a subset of 882 3D images from
126 subjects.

In all experiments, the face images are aligned and cropped
to 32*32 pixels based on the location of the eyes.

B. Experiment Settings

1) Parameters for 2D-QSDA and 2D-QSDAw: The QSR
models of 2D-QSDA and 2D-QSDAw are given in Eq. (7).
To start with, μ controls the relative importance of the
between-class and within-class scatters, and it is tuned among
the values 10−3, 10−2, · · · , 103.

λ2 is used to avoid the potential colinearity problem when
the number of training samples is far less than the input
dimension of samples [37]. We empirically set it to 10−3. Our
algorithm is robust to the choice of λ2 since we directly cope
with 2D quaternion matrices, and hence the number of samples
is generally larger than the number of processing dimensions.

λ1, j controls the sparsity of the j th basis vector, and this
is implemented via column-wise soft-thresholding. According
to Eq. (18) and Lemma 1, the threshold is set to σ = λ1, j

ρ .
In practice, to relieve the burden of manually tuning λ1, j ,
we specify the cardinality ω. More specifically, we sort the val-
ues of ‖T(:, i)‖2 and save them to tsort in a descending order.
The threshold σ is set to the (ω + 1)th element of tsort . This
way, only ω columns of T are retained, and thus exactly ω non-
zero entries in the basis vector are preserved when converting
back into the quaternion space. For convenience, ω is fixed
for all projection vectors and is chosen from 2, 4, · · · , 32.

2) Competing Algorithms: 15 state-of-the-art peer algo-
rithms are used for comparison, including six unsupervised
methods (PCA-based) and eight supervised ones (LDA-based).
The competing algorithms are PCA [2], 2D-PCA [51],
2D-PCA-L1 [52], QPCA [15], MPCA [53], MSPCA [54],
2D-QSPCA [18], LDA [1], 2D-LDA [8], 2D-LDA-L1 [22],
QDA [21], TDA [14], STDA [25], KDA [3], and IKDA [7].

Among them, PCA, LDA, KDA, and IKDA use vector-
ized samples, while 2D-PCA, 2D-PCA-L1, 2D-LDA, and
2D-LDA-L1 directly process 2D matrices. These algorithms
are designed for gray-scale images, and we extend them to
process RGB or RGB-D images by concatenating different
image channels. MPCA and MSPCA utilize the third-order
tensors to represent color or 3D face images. QPCA, QDA,
2D-QSDA, and 2D-QSDAw utilize the quaternion representa-
tion. Note that QPCA and QDA cope with vectorized samples
while 2D-QSDA and 2D-QSDAw directly process quaternion
matrices.

Following the literature [13], [15], [17], the R, G, and B
channels of color images are placed into the three imaginary
parts of the quaternion components. When being applied to
RGB-D images, we follow this convention to impose the color
channels into the imaginary parts, and thus the depth channel

is placed into the scalar part. In practice, we can arbitrarily
place the R, G, B, and D channels into the four quaternion
components since the advantage of quaternion representation is
to holistically explore the correlation among multiple channels
rather than the information from a particular channel [55].

3) Setups for Peer Algorithms: We first specify the projec-
tion dimension (k) of the competing algorithms. For PCA and
QPCA, k is individually selected from 10, 20, 30, · · · , ind ,
where ind = min(h, m ∗ n), h is the total number of
training samples, and m ∗ n is the size of the image matrices
(m = n = 32 in our experiments); for LDA and QDA, k
is selected from 10, 20, 30, · · · , c − 1, where c is the total
number of classes; for MPCA, MSPCA, TDA, and STDA,
their row (kr ) and column (kc) dimensions are denoted by
kr = kc, and they are selected from 1, 2, 3, · · · , 32, while the
third dimension is chosen from 1, 2, 3 for color face images
and 1, 2, 3, 4 for 3D face images; for 2D-PCA, 2D-PCA-L1,
2D-LDA, and 2D-LDA-L1, k is set to 2, 4, · · · , 32; for the
kernel methods, i.e., KDA and IKDA, we test all recommended
parameters and record the best performance. Considering the
sparse algorithms, MSPCA and STDA, the cardinality ω is
set to 2, 4, · · · , 32 and is fixed for all basis vectors, as with
2D-QSDA and 2D-QSDAw.

For all experiments in this work, the classification is based
on the nearest neighbor classifier with l1-norm distance. We
report the best recognition rates and the corresponding dimen-
sion of features for all competing algorithms.

C. Color Face Recognition

Color information is an important cue for face recognition,
and the high order cross-channel correlation should be con-
sidered to preserve the discriminant details of each specific
class [10]. Treating different color channels in a holistic way,
2D-QSDA and 2D-QSDAw show significant improvements
over the competing algorithms. Besides, 2D-QSDAw consis-
tently outperforms 2D-QSDA, demonstrating the effectiveness
of the weighting scheme.

1) Performance on Clean Face Images: 2D-QSDA and
2D-QSDAw are compared to the state-of-the-arts on three
color face databases. The results are detailed in TABLE II
and are summarized as:

• For the AR database, we test the performance of different
algorithms with variations over time. The clean color
face images in session one and session two are used for
training and testing, respectively. 2D-QSDAw obtains the
highest recognition rate, followed by 2D-QSDA.

• On color FERET, the recognition performance over vary-
ing expressions is examined. Note that the training set
contains only one sample for each class, and hence the
competing algorithms may suffer from the small sample
size problem [37]. 2D-QSDA and 2D-QSDAw obtain
consistently good performance because they essentially
work in the column direction of color images and thus the
number of samples is sufficient compared with the num-
ber of feature dimensions. In addition, in Eq. (7), setting
λ2 > 0 further improves the robustness of 2D-QSDA and
2D-QSDAw to the small sample size problem.
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TABLE II

EXPERIMENT RESULTS ON CLEAN COLOR FACE IMAGES

TABLE III

EXPERIMENT RESULTS ON NATURAL-OCCLUDED COLOR FACE IMAGES

• On CMU PIE, similar to FERET, we impose a challenge
on face recognition with single training image per person.
In this test, the neutral color face images are used
for training and the rest images with expression and
facial action changes are used for testing. 2D-QSDA and
2D-QSDAw are superior to the other methods.

2) Performance on Partially Occluded Face Images: To
evaluate the generalization ability of different algorithms in
dealing with unseen data, we examine their robustness to
both real-world (e.g., sunglasses and scarves) and synthetic
occlusions that are not involved in the training phase on the
AR database.

• For real occlusions, the clean and natural-occluded face
images are used to construct the training and testing
sets respectively. According to TABLE III, 2D-QSDAw

and 2D-QSPCA obtain the highest recognition rate and
2D-QSDA comes second in performance. This veri-
fies the good generalization ability of the sparse fea-
ture extraction algorithms when the testing sets are
contaminated.

• For synthetic occlusions, the clean color face images from
session one are used for training. We randomly add white-
and-black blocks on the clean face images from session
two to form the testing sets. The blocks are adjusted
into different sizes ranging from 10% to 60% of the size
of original images. For each testing image, the random
block is imposed to the image at a random position,
and then the whole testing set is fixed for all compet-
ing algorithms to avoid the interference of randomness.
As shown in Fig. 5, 2D-QSDAw and 2D-QSDA reach the
highest and the second highest recognition rates under all
experimental settings with 5%-10% improvements over
the best competing algorithms.

D. 3D Face Recognition

With the advance of new cameras and sensing devices,
depth images can be captured along with the traditional color
images. 3D (RGB-D) face images contain more robust features

Fig. 5. Recognition rates on color face recognition with varying portions of
occlusions.

of a subject and thus offer more comprehensive represen-
tations. Incorporating the depth cue into traditional color
face recognition has led to improvements with comparison to
the usage of color face images alone [11], [16]. 2D-QSDA
and 2D-QSDAw exploit the quaternion representation, which
intrinsically provide a way to encode the depth cue into the
real dimension. Therefore, 3D face recognition can be fulfilled
without extra computation cost. In this section, we evaluate
the performance of different algorithms under the circum-
stances of 3D face recognition. In general, 2D-QSDA and
2D-QSDAw outperform or are comparable with the state-
of-the-arts on clean 3D face images and are more reliable
and generalizable to recognize 3D occluded face images.
Besides, 2D-QSDAw obtains consistently improvements
over 2D-QSDA.

1) Performance on Clean Face Images: The clean 3D
face images in EURECOM, LFFD, and UMB databases are
employed for experiments and the final results are presented in
TABLE IV. The detailed comparison is analyzed as follows.
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TABLE IV

EXPERIMENT RESULTS ON CLEAN 3D FACE IMAGES

TABLE V

EXPERIMENT RESULTS ON NATURAL-OCCLUDED 3D FACE IMAGES

• For EURECOM and LFFD, clean 3D face images
from two sessions are used for training and testing,
respectively. 2D-QSDAw and 2D-QSDA are the top two
methods on EURECOM; 2D-QSDAw is the second-best-
performing method on LFFD, following IKDA.

• On the UMB database, a single training image per person
is used to train optimal bases and the remaining face
images with different expressions and intensive lightness
changes compose the testing set. 2D-QSDAw is the best-
performing method, followed by MSPCA.

2) Performance on Partially Occluded Face Images: We
also compare the performance of competing algorithms in
terms of their generalization ability by investigating their
robustness to occlusions. The EURECOM, LFFD, and UMB
databases are employed with all clean images for training and
the natural-occluded face images for testing. As reported in
TABLE V, 2D-QSDAw and 2D-QSDA consistently achieve
the best and second-best performance and they outperform the
best peer algorithms by the margins of 4%-10%. This validates
the good generalization ability of 2D-QSDA and 2D-QSDAw

in extracting features from RGB-D images.
To summarize: 1) 2D-QSDA and 2D-QSDAw are compa-

rable with 2D-QSPCA on the RGB databases, and they show
advantages over their competitors in most cases; 2) on RGB-D
databases, 2D-QSDAw and 2D-QSDA obtain consistently
the best and second-best performance, and they outperform
2D-QSPCA by the margins of 5%-17%. This observation
coincides with the fact that 2D-QSDA and 2D-QSDAw can
naturally take advantage of the discriminant information asso-
ciated with the complement of depth and color channels;
3) 2D-QSDAw always outperforms 2D-QSDA since it pays
more attention to the challenging class pairs using a weighting
scheme.

E. Model Analysis

In this section, we present an in-depth study on the modules
of 2D-QSDA to advance the understanding of the mechanisms

behind 2D-QSDA. Similar observations can be made for
2D-QSDAw since it shares the same optimization strategy with
2D-QSDA.

1) Ablation Study: Firstly, we examine the ablation phe-
nomena associated with the modules of 2D-QSDA, i.e.,
quaternion representation, matrix-based processing, and sparse
regularization. The results on the AR dataset are shown in
TABLE VI. In general, the three modules of 2D-QSDA jointly
work to improve the performance of 2D-QSDA. Specifically,
1) comparing the performance of 1D-SLDA and 2D-SLDA to
that of 1D-QSDA and 2D-QSDA, we find that the quaternion
representation helps to improve the performance in both clean
and occluded images, and shows higher robustness to partial
occlusion; 2) comparing the recognition rates of 1D-SLDA and
1D-QSDA with those of 2D-SLDA and 2D-QSDA, matrix-
based processing shows more performance enhancements
when dealing with clean images; 3) we can also find that
the sparse regularization is highly beneficial to improve the
robustness to partial occlusion according to the performance
of 2D-QDA and 2D-QSDA.

2) Benefits From Sparse Regularization: We further explore
the benefits gained from sparse regularization as it is an
important module of 2D-QSDA. As shown in Fig. 6, the influ-
ence of the sparsity level on the classification accuracy is
investigated with clean and partially-occluded images from
the AR database. The red dots indicate the best recognition
rates. As can be seen, 1) sparse regularization improves the
recognition accuracy, and 2) a relatively higher sparsity level
of the projection basis is required when being applied to
partially-occluded images.

The sparse regularization also provides a good interpreta-
tion for the basis vectors. Conceptually, 2D-QSDA works in
the column direction of images, and thus the basis vectors
maintain the discriminant information in the column space.
With sparsity constraints, the obtained basis vectors emphasize
the most important rows of images while ignoring the less
important ones. For illustration, we visualize the non-zero
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Fig. 6. Classification accuracy vs. cardinality and feature dimension.

TABLE VI

ABLATION STUDY ON DIFFERENT MODULES OF 2D-QSDA

Fig. 7. Visualization of non-zero entries in the first ten sparse basis vectors
of 2D-QSDA.

entries in the first ten sparse basis vectors of 2D-QSDA trained
on AR in Fig. 7. In this example, the cardinality of each basis
vectors is fixed to eight. When projecting face images onto
these sparse basis vectors, only non-black regions are retained
and further considered in the subsequent processing. The non-
black regions indicate that the discriminant features selected
by 2D-QSDA are the informative parts of face images such as
eyes, chin, nose, mouth, and cheek, which coincide with the
discriminative parts reported in [56], [57].

VI. COMPARISON WITH EXISTING QUATERNION MODELS

To provide a comprehensive understanding of 2D-QSDA,
in this section, we compare 2D-QSDA with several newly
proposed quaternion-based image processing methods.

A. Comparison With 2D-QSPCA

Our previous work 2D-QSPCA [18] is relevant to this work
because they follow the same basic optimization strategy. But
they are significantly different from the motivations, mathe-
matical formulations, and have different applicable conditions:
1) 2D-QSPCA is designed to reduce the dimension of input
samples while retaining the variation of the entire database
as much as possible. Meanwhile, 2D-QSDA does not focus
on preserving the common information of the whole database.
Instead, it pays close attention to the divergence of different
classes; 2) the objective of 2D-QSPCA is to maximize a
constrained trace function. On the other hand, 2D-QSDA is
constructed into a constrained trace ratio form, which is a

Fig. 8. Comparison of the Dunn index of 2D-QSPCA and 2D-QSDA.

more complicated and general model in the field of dimension
reduction. Essentially, the objective of 2D-QSPCA falls into
a special case of the trace ratio problem where the numerator
equals the trace of an identity matrix; 3) since 2D-QSPCA
extracts the common structure from the whole database, when
being applied to process RGB-D images, it may lose the
complementary information from the color and depth channels
and thus suffer performance degradation. Meanwhile, 2D-
QSDA focuses on the separability of the projected samples,
and thus, can better utilize the complementary information.
Hence, 2D-QSDA is more suitable for extracting discriminant
features from RGB-D images.

To quantitatively show the properties of 2D-QSPCA and
2D-QSDA, we compare their separable ability in their corre-
sponding projected spaces. More specifically, the class com-
pactness and the separability of the projected samples are
simultaneously considered via the Dunn index (DI) [58], [59]:

DI = min1≤i< j≤c δ(Ci , C j )

max1≤k≤c �k
, (22)

where c is the class number, Ci and C j represent the
i th and j th classes, δ(·) is the interclass distance metric,
and �k measures the compactness of the kth class. We
extend the DI measure into the quaternion domain by cal-
culating the corresponding quaternion distances. As verified
in Fig. 8, 2D-QSDA has higher DI values on all databases,
which is consistent with the motivation of discriminant
analysis.

B. Comparison With QMMC, QSRC, and QPCANet

Due to the powerful representation ability in capturing the
high order cross-channel correlation, the quaternion algebra
has been well integrated with other real domain techniques
for color image processing [17], [60], [61].
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TABLE VII

COMPARISON OF 2D-QSDA AND OTHER QUATERNION-BASED METHODS

A novel quaternion based maximum margin criterion
(QMMC) algorithm was proposed in [60] to extract the color
features and has shown advantages over the traditional QPCA
and QDA criteria for the task of classification. While effective,
QMMC transforms the color images into quaternion vectors,
and thus, the spatial structures may be destroyed during feature
extraction. In addition, QMMC cannot well process the unseen
data since it exploits the l2-norm as the measurement. Similar
to QMMC, 2D-QSDA also focuses on discriminant features.
The difference lies in the joint considering of the matrix-based
operation, quaternion representation, and sparse regularization,
through which the spatial and cross-channel structures of color
images are well preserved and the robustness of 2D-QSDA is
ensured.

Inspired by the fact that sparse representation-based classi-
fication (SRC) has achieved great success in face recognition,
the work in [17] proposed quaternion-based SRC (QSRC).
Given an input image, QSRC encodes it using a representation
coefficient vector over a pre-defined dictionary, maintaining
the non-zero coefficients only on samples from the same class.
Afterward, the input sample is assigned to the class with
minimal reconstruction error. In contrast to 2D-QSDA that
aims to extract the low-dimensional discriminant features from
high-dimensional data, QSRC is specialized for classification
and it will not reduce the dimension of samples. Imposing
sparse coefficients, QSRC is robust to the naturally-occluded
face images to a certain degree. However, its performance
is greatly decreased for synthetic occlusions. This may come
from the fact that the distribution of the synthetic occlusions
is too far away from the clean images, and hence, it is very
hard to obtain the correct representation coefficients.

Nowadays, neural network-based models have witnessed
great performance improvement in many real-world applica-
tions. Taking advantage of the cascade architecture of the
network in extracting high-dimensional multi-scale features,
PCANet [62] devised a simple yet effective structure for
face recognition. To facilitate the processing of color images,
QPCANet [61] was proposed and has shown performance
enhancement. By contrast, 2D-QSDA is a statistical method
and is used to extract low-dimensional features.

The numerical comparison of the above-mentioned algo-
rithms is reported in TABLE VII. Generally, QMMC and
QSRC are not robust enough to the unseen data. Benefited
from the cascade network structure, QPCANet usually obtains
the best performance in recognizing clean face images and
the face images with small occlusions; meanwhile, 2D-QSDA
is more robust than QPCANet when the face images suffer

Fig. 9. Comparison of QCNN and 2D-QSDA on CIFAR10.

from a large portion of occlusions. This is derived from
the facts that: 1) the multi-layer high-dimensional features
extracted from QPCANet contain more rich information for
recognition, while they are prone to the over-fitting problem;
2) the sparse regularization improves the generalization ability
of 2D-QSDA. Therefore, when being applied to images with
partial occlusions, 2D-QSDA shows competitive advantages.

C. Comparison With QCNN

Though effective in classification, QPCANet uses only
simple operations to emulate the processing layers of convolu-
tional neural networks (CNN), and thus it may lose the optimal
representation ability of quaternion algebra in preserving the
cross-channel relationship. Recently, a novel quaternion CNN
[63] was proposed by re-designing the basic network modules
in quaternion domain, and it shows promising performance in
generic object recognition. We therefore compare the perfor-
mance of QCNN and 2D-QSDA on CIFAR10 [64] and several
color face databases. Please note that the data augmentation
operation in QCNN is turned off for fair comparison.

For CIFAR10, we use the first 1, 5, 10, 100, 1000, and
5000 images per subject in the training set for model training,
respectively. As shown in Fig. 9, QCNN achieves much
better performance when there are sufficient training samples,
while 2D-QSDA has advantages in dealing with the limited
training sample problem. This is because QCNN can learn
more discriminative features from massive training samples,
and its cascade network architecture is able to extract high-
dimensional multi-scale features that contain rich informa-
tion for recognition. Meanwhile, 2D-QSDA is a statistical
dimension reduction method that works in the column space
of images. Thus, a limited number of training samples per
subject is adequate to discover the statistics of the dataset. For
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TABLE VIII

COMPARISON OF QCNN AND 2D-QSDA ON COLOR FACE DATABASES

color face recognition, generally speaking, 2D-QSDA achieves
better performance than QCNN as recorded in TABLE VIII.

VII. CONCLUSION

In this paper, we developed 2D-QSDA and 2D-QSDAw to
extract sparse discriminant features from RGB and RGB-D
images while reducing their dimensions. The constrained
trace ratio problems of 2D-QSDA and 2D-QSDAw were first
transformed into constrained trace difference problems, and
then converted to flexible QSR models for optimization. To
solve the QSR models, we converted them into equivalent
complex forms, where the quaternion-valued sparse regu-
larization terms were transformed into the complex-valued
group Lasso penalties. We then designed a nested iterative
algorithm to optimize the complex-valued models. In each
iteration, the group Lasso problems were solved using a
novel sub-algorithm that was devised under complex ADMM.
When being applied to practical applications, 2D-QSDA and
2D-QSDAw have shown the enhanced performance on clean
samples and the robustness to the out-of-sample data that is
unseen in the training phase. Extensive experiments on color
and 3D face recognition verified the effectiveness and the
generalization ability of 2D-QSDA and 2D-QSDAw.

The proposed 2D-QSDA and 2D-QSDAw exploit a nested
iterative optimization scheme, in which the complex ADMM
algorithm is involved. Nevertheless, the optimization proce-
dure is inefficient when the samples are of large-size since the
computation of complex ADMM is proportional to the cube
of the row numbers of images. Inspired by [65], our future
work will develop fast quaternion optimization algorithms.

APPENDIX

Proof: Without sparsity constraints, Eq. (6) reduces to

T r(V̇∗
s ṠbV̇s)

Tr(V̇∗
s ṠwV̇s)

(23)

or equivalently, a trace difference problem

max
V̇s

T r(V̇∗
s ṠbV̇s) − μT r(V̇∗

s ṠwV̇s)

= max
V̇s

T r(V̇∗
s (Ṡw − μṠw)V̇s), (24)

where μ = max Tr(V̇∗
s ṠbV̇s)/Tr(V̇∗

s ṠwV̇s) is the optimal
ratio of the between-class and within-class scatters, and the
solution of Eq. (24) equals to the leading eigenvectors of
Ṡb − μṠw. Also note that �̇ = Ṡb − μṠw in Theorem 1.

To provide an efficient tool for quaternion analysis, the
properties of the complex adjoint form of the quaternion
matrix are reviewed in TABLE IX. Let the multiplication

TABLE IX

PROPERTIES OF THE COMPLEX ADJOINT FORM

and addition of quaternion matrices Ṗ and Q̇ be compatible.
According to [33], we have

Based on these properties, Eq. (7) can be transformed to

2(‖Ṙ−∗�̇ − ȦḂ∗�̇‖2
F + λ2‖Ḃ‖2

F )

= ‖χṘ−∗χ�̇ − χȦχḂ∗χ�̇‖2
F + λ2‖χḂ‖2

F . (25)

Let R = χṘ, � = χ�̇, A = χȦ, B = χḂ, where the
columns of A and B are [a1, · · · , a2k] and [b1, · · · , b2k ].
Eq. (25) can be rewritten as

T r [(R−1 − BA∗)(R−∗− AB∗)��∗] + λ2T r(B∗B). (26)

Let � = ��∗. Eq. (26) can be further reduced to

T r(R−∗�R−1)−2Re[Tr(A∗R−∗�B)]+Tr [B∗(�+λ2I)B]

= Tr(R−∗�R−1)+
2k∑
j=1

b∗
j (�+λ2I)b j −2Re(a∗

j R
−∗�b j ).

(27)

Given A, the optimal b j can be solved individually as

b̂ j = (� + λ2I)−1�R−1a j , (28)

or equivalently,

B̂ = (� + λ2I)−1�R−1A. (29)

Substituting Eq. (29) to Eq. (27), the objective is now to
maximize

Tr{A∗[R−∗�(� + λ2I)−1�R−1]A}. (30)

With the orthonormal constraint, the optimal columns of A
are the leading eigenvectors of

R−∗�(� + λ2I)−1�R−1

= R−∗�R−1(R−∗�R−1 + λ2I)−1R−∗�R−1, (31)

which equals to the leading eigenvector of R−∗�R−1. Let the
eigen-decomposition of the Hermitian matrix R−∗�R−1 be
EDE∗ and E = [e1, · · · , e2k] where the columns of E are
sorted with their corresponding eigenvalues in a descending
order.

Then, Â = E, or equivalently, â j = e j ( j = 1, · · · , 2k).
Substituting a j back into Eq. (28) gives

b j = (� + λ2I)−1�R−1a j

= R−1(R−∗�R−1 + λ2I)−1(R−∗�R−1)a j

= R−1E(D + λ2I)−1E∗EDE∗a j

= d j j

d j j + λ2
R−1a j , (32)

where d j j is the j th diagonal element of D.
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Since Ṙ is a unitary matrix and R = χṘ, we have R∗ =
R−1. From R−∗�R−1 = EDE∗ it follows that

� = R∗(R−∗�R−1)R

= R∗(EDE∗)R
= (R−1E)D(R−1E)∗. (33)

According to Eqs. (32) and (33), we know: 1) the optimal
columns of B are proportional to the columns of R−1A; 2) the
columns of R−1A = R−1E are the leading eigenvectors of
�. That is, the optimal columns of B are proportional to the
leading eigenvectors of �.

Recall that B = [b1, · · · , b2k ] and � are the complex
adjoint forms of Ḃ and �̇ respectively, and the eigen-
decomposition of �̇ can be fully recovered from that of
� using operator γ (·) in Definition 2 [42]. Thus, after the
recover operation, ḃ j is proportional to the j th eigenvector of
�̇, or equivalently, ḃ j is proportional to the optimal v̇s j .
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